portmod.blogg.se

Non euclidean geometry art
Non euclidean geometry art











non euclidean geometry art

Tifrea, A., Bécigneul, G., Ganea, O.: Poincaré glove: hyperbolic word embeddings. Suzuki, R., Takahama, R., Onoda, S.: Hyperbolic disk embeddings for directed acyclic graphs. Sun, Z., Deng, Z., Nie, J., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. Shimizu, R., Mukuta, Y., Harada, T.: Hyperbolic neural networks++. Shavitt, Y., Tankel, T.: Hyperbolic embedding of internet graph for distance estimation and overlay construction. Samal, A., Sreejith, R., Gu, J., Liu, S., Saucan, E., Jost, J.: Comparative analysis of two discretizations of Ricci curvature for complex networks. Sala, F., Sa, C.D., Gu, A., Ré, C.: Representation tradeoffs for hyperbolic embeddings. Pei, H., Wei, B., Chang, K.C., Lei, Y., Yang, B.: Geom-GCN: geometric graph convolutional networks. Papadis, N., Stai, E., Karyotis, V.: A path-based recommendations approach for online systems via hyperbolic network embedding. Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. Nickel, M., Kiela, D.: Learning continuous hierarchies in the Lorentz model of hyperbolic geometry. In: Advances in Neural Information Processing Systems, pp. Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. Ni, C., Lin, Y., Luo, F., Gao, J.: Community detection on networks with Ricci flow. (eds.): Modern Approaches to Discrete Curvature.

non euclidean geometry art non euclidean geometry art

Liu, Q., Nickel, M., Kiela, D.: Hyperbolic graph neural networks. Le, M., Roller, S., Papaxanthos, L., Kiela, D., Nickel, M.: Inferring concept hierarchies from text corpora via hyperbolic embeddings. Krioukov, D.V., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic geometry of complex networks. Kolyvakis, P., Kalousis, A., Kiritsis, D.: Hyperkg: hyperbolic knowledge graph embeddings for knowledge base completion. Gülçehre, Ç., et al.: Hyperbolic attention networks. In: International Conference on Learning Representations (2018)

non euclidean geometry art

Gu, A., Sala, F., Gunel, B., Ré, C.: Learning mixed-curvature representations in product spaces. Grattarola, D., Zambon, D., Livi, L., Alippi, C.: Change detection in graph streams by learning graph embeddings on constant-curvature manifolds. Ganea, O., Bécigneul, G., Hofmann, T.: Hyperbolic entailment cones for learning hierarchical embeddings. arXiv preprint arXiv:1804.00891 (2018)įorman, R.: Bochner’s method for cell complexes and combinatorial Ricci curvature. 4869–4880 (2019)ĭavidson, T.R., Falorsi, L., De Cao, N., Kipf, T., Tomczak, J.M.: Hyperspherical variational auto-encoders. In: NIPS Workshop (2019)Ĭhami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. arXiv preprint arXiv:2005.03675 (2020)Ĭhami, I., Wolf, A., Sala, F., Ré, C.: Low-dimensional knowledge graph embeddings via hyperbolic rotations. arXiv preprint arXiv:1902.08648 (2019)Ĭhami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., Murphy, K.: Machine learning on graphs: A model and comprehensive taxonomy. arXiv preprint arXiv:1705.10359 (2017)Ĭhamberlain, B.P., Hardwick, S.R., Wardrope, D.R., Dzogang, F., Daolio, F., Vargas, S.: Scalable hyperbolic recommender systems. IEEE SPM 34(4), 18–42 (2017)Ĭhamberlain, B.P., Clough, J.R., Deisenroth, M.P.: Neural embeddings of graphs in hyperbolic space. īronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. (eds.) Neural Networks: Tricks of the Trade. In: Montavon, G., Orr, G.B., Müller, K.-R. 1(1), 1–8 (2010)īonnabel, S.: Stochastic gradient descent on Riemannian manifolds. īoguná, M., Papadopoulos, F., Krioukov, D.: Sustaining the internet with hyperbolic mapping. Springer Science & Business Media, New York (2012). 4465–4475 (2019)īerger, M., Gostiaux, B.: Differential Geometry: Manifolds, Curves, and Surfaces, vol. 3(1), 3:1–3:30 (2018)īalazevic, I., Allen, C., Hospedales, T.: Multi-relational poincaré graph embeddings. arXiv preprint arXiv:1911.05076 (2019)īakker, C., Halappanavar, M., Sathanur, A.V.: Dynamic graphs, community detection, and Riemannian geometry. arXiv preprint arXiv:1411.1350 (2014)īachmann, G., Bécigneul, G., Ganea, O.E.: Constant curvature graph convolutional networks. Asta, D., Shalizi, C.R.: Geometric network comparison.













Non euclidean geometry art